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First-order melting of the vortex lattice in an anisotropic
superconductor in a magnetic field with arbitrary direction
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Abstract. We calculate the angular dependence of the transition line of the first-order melting
in strong type-II superconductors using an angle-dependent nonperturbative model for the
critical behaviour in three-dimensional anisotropic superconductors and a self-consistent Hartree
treatment of correlations along the direction in which fluctuations occur. The results are in good
agreement with experiments performed on untwinned single crystals of YBa2Cu3O7−δ .

1. Introduction

The behaviour of vortices in high-temperature superconductors (HTSCs) has been widely
discussed in many recent papers. The growing interest in the study of vortex behaviour in
these materials stems from the richness and complexity of the new physics of the vortex
state as well as the considerable possibilities for technological applications.

For conventional superconductors the Abrikosov mean-field theory predicts the
formation of a vortex lattice in the mixed state which undergoes a second-order phase
transition at the upper critical fieldHc2(T ). In HTSCs however, thermal fluctuations occur
over a broad temperature–field interval with the consequence that new transition lines appear.
These lines were experimentally observed and attributed to first-order melting of the flux
lattice. Many experimental studies of untwinned and twinned single crystals in the presence
of moderate magnetic fields [1–7] have shown that the melting line in the mixed state of
HTSCs corresponds to a first-order transition.

Safaret al [2, 3] have reported current–voltage measurements made on clean, untwinned
YBa2Cu3O7−δ single crystals; they found that for applied magnetic fields below a certain
value (∼10 T) the melting transition in the vortex lattice is hysteretic in both temperature and
magnetic field, whereas for applied magnetic fields above that value the phase boundary
(characterizing the first-order melting transition) sharply changes slope, giving way to a
second-order transition.

Kwok et al [4, 5] have reported experimental results of AC resistivity measurements
made on untwinned and twinned single crystals of YBa2Cu3O7−δ which show a transition
line attributable to melting for an untwinned single crystal in the presence of applied
magnetic fields both parallel and perpendicular to the direction of anisotropy of the crystal
(the c-axis). For twinned crystals it was shown that the magnitude of the sharp drop in the
magnetoresistivity associated with the first-order vortex melting transition is reduced but not
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destroyed by the presence of a few twin boundaries. On the other hand, when a sufficient
number of point defects are present in an untwinned crystal, the first-order melting transition
is replaced by a second-order transition at lower temperature. Similar results were obtained
by Ghumlouchet al [6] from the observation of vortex lattice melting in both untwinned
and twinned single crystals of YBa2Cu3O7−δ by means of Seebeck-effect measurements
which do not require a transport current.

More recently Welpet al [7] have observed discontinuous jumps of the magnetization
in an untwinned single crystal of YBa2Cu3O7−δ, whose location in theH–T phase diagram
coincides with the location of the resistivity drops measured for the same sample. These
results demonstrate the existence of a first-order melting transition of the flux line lattice,
since the discontinuity in the magnetization is one of the defining characteristics of a
magnetic first-order transition.

Tesanovicet al [8–11] have developed a nonperturbative theory of critical behaviour
for anisotropic superconductors for both two- and three-dimensional (2D and 3D) systems
in the presence of strong magnetic fields applied in the direction parallel to thec-axis
(perpendicular to theab-planes), describing the critical behaviour by means of an interacting
particle system with long-ranged multiple-body forces (a dense vortex plasma). The
superconducting transition corresponds to the liquid–solid transition in the dense vortex
plasma (DVP). This theory uses a nonperturbative approach to the Ginzburg–Landau (GL)
free-energy functional in which the order parameter is expanded in terms of the lowest
Landau levels (LLL). The scale invariance of the DVP leads to a universal character of the
vortex melting line at which the superconducting transition occurs.

Herbut and Tesanovic [12] have calculated the transition line of the first-order melting
of the vortex lattice in a 3D type-II superconductor in the presence of moderate magnetic
fields along thec-axis by using the results from the density functional theory of vortex
melting in two dimensions [13] and a self-consistent Hartree treatment of correlations along
thec-axis. In the calculation of the melting line carried out in reference [12] the Lindemann
criterion is not used, in contrast with preceding work [14, 15].

In a recent study [16] the nonperturbative Tesanovic theory for the critical behaviour
of 3D anisotropic superconductors has been generalized for an arbitrary direction of the
applied magnetic field. In this paper we use this generalized form of the Tesanovic’s theory
to obtain the angular dependence of the melting line in a 3D anisotropic superconductor.

In section 2 the angle-dependent forms of the GL free energy and the coupling constant
are presented. Section 3 displays the calculation of the angular dependence for the melting
line. Finally in section 4 the main results of the work are discussed and compared with
experiment.

2. Angular dependence of the free energy

For a strongly type-II anisotropic 3D superconductor with fluctuations of the magnetic field
neglected (the GL parameterκ � 1), in the presence of an applied magnetic field with
arbitrary direction, the partition function can be written in the form

Z =
∫

D9 D9∗ exp

(
−FGL
kBT

)
(1)

with FGL being the GL free energy given [8] by

FGL =
∫

d3r

[
α(T )|9(r)|2+ β

2
|9(r)|4+

∑
µ

γµ

∣∣∣∣(∂µ + 2ei

c
Aµ

)
9(r)

∣∣∣∣2
]

(2)
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whereα(T ), β and γµ are the usual GL coefficients andµ runs over the three directions
x, y andz. If we consider the above free energy in the subspace spanned by the LLL it is
possible to rewrite the problem in a more suitable form.

We expand9 in terms of the LLL and choose the gauge [16]

A = B

2
(z sinθ − y cosθ, x cosθ,−x sinθ) (3)

to describe the microscopic magnetic fieldB = ∇ ×A which forms an angleθ with the
z-direction (c-axis). By introducing the following coordinate transformation:[

y1

z1

]
=
[

cosθ − sinθ
ε sinθ ε−1 cosθ

] [
y

z

]
(4)

and also carrying out the changes
√
δx → x̄, y/

√
δ → ȳ andz1→ z̄, the GL free energy

in the LLL subspace is transformed to

FGL

kBT
= ε

kBT δ2

∫
d2r̄ dz̄

[
ᾱ(T ,H, θ) |9|2+ β

2
|9|4+ γz̄ |∂z̄9|2

]
(5)

where ᾱ(T ,H, θ) = α(T )[1 − H/Hc2(T , θ)], ε2 = mab/mc is the mass anisotropy ratio,
δ2 = cos2 θ + ε2 sin2 θ is the angle-dependent anisotropy parameter andγz̄ = δ2γc/ε

2. For
an explicit evaluation of the free energy, the integral and derivative along thez̄-axis may
be defined on a set of intervals of size3 and then at the end of the calculation the limit
3→ 0 is to be taken. However, it is necessary to define a cut-off length of the order of the
correlation length, because the exact free energy is actually divergent in the3 → 0 limit
[10]. In a first approximation we assume3 = ξz̄ as that cut-off length and use a suitable
rescaling for the fields and lengths, obtaining the free energy in the form [16]

FGL

kBT
=
∫

d2r̄ dz̄

[
g(T ,H, θ)|9|2+ |g(T ,H, θ)||∂z̄9|2+ 1

4
|9|4

]
(6)

where the coupling constantg(T ,H, θ) is defined by

g(T ,H, θ) =
√
ε

δ

(
πl2ξz̄

βkBT

)1/2

ᾱ(T ,H, θ) =
(
πl2ξθ

βkBT

)1/2

ᾱ(T ,H, θ) (7)

where ξz̄ = (δ/ε)(γc/ |ᾱ(T ,H, θ)|)1/2 and ξθ (T ,H) is the correlation length along the
direction of the field at an angleθ with respect to thec-axis, given by

ξθ (T ,H) = 1

δ

(
γc

|ᾱ(T ,H, θ)|
)1/2

. (8)

Equation (8) is the generalized form of the temperature- and field-dependent correlation
length defined in reference [8]. This equation has the limitsξc(T ,H) andξab(T ,H) for the
anglesθ = 0 andθ = π/2 respectively. The properties of the DVP are determined by the
value of the coupling constant. The valueg(T ,H, θ) = 0 corresponds to the mean-field-
theory upper critical fieldHc2(T , θ), whereas the solid–liquid transition may be obtained
from the melting valueg(T ,H, θ) = gM < 0. In the particular case whereθ = 0, the
coupling constant is reduced to that obtained by Tesanovic for the case of a magnetic field
applied along thec-axis of the crystal [8].
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3. Angular dependence of the melting line

In order to obtain an explicit expression for the melting line, we takeα(T ), β and γc
from equation (5) as phenomenological parameters and introduce the rescalingψ →
(4πl2βd/kBT δ)−1/4ψ, r̄ → √2πlr̄ and z̄ → (δd/ε)z̄, where l is the magnetic length
for charge 2e andd is typically the spacing between the pairs of CuO2 planes. Thereby the
GL free energy becomes

FGL

kBT
=
∫

d2r̄ dz̄

[
gα|9|2+ gγ |∂z̄9|2+ 1

4
|9|4

]
(9)

in which gα = (πl2d/βkBT δ)1/2ᾱ(T ,H, θ) andgγ = (πl2d/βkBT δ)1/2(γc/d2).
The transition line in theH–T phase diagram is obtained by using the correlation length

ξz̄ calculated from a self-consistent Hartree treatment [12] of equation (9):

ξz̄ =
(

gγ

gα + 〈|9|2〉/4

)1/2

(10)

where the thermal average is determined by

〈|9|2〉 = 1

2π

∫ ∞
−∞

dk

gγ k2+ gα + 〈|9|2〉/4
. (11)

The phase boundary corresponding to the melting line of the vortex lattice is determined
by the conditiong(T ,H, θ) = gM . In terms ofgα this condition takes the form

gαξ
1/2
z̄ = gM (12)

with ξz̄ measured in units ofδd/ε. In the 3D regime,ξc > 1 (in units ofd), and therefore
ξz̄ > 1 in this case. The value ofgM is assumed to be a universal number by Herbut and
Tesanovic [12] which takes the valuegM = −6.5 [13] for both the 2D and 3D cases, as the
vortex transition in 3D systems is driven by the same mechanism as in the 2D case, since
the melting of the vortex lattice is effectively 2D in nature in both cases [12].

The explicit form of the melting line is reached by simultaneously solving equations
(10), (11) and (12), to obtain

t + δh+
(

2cκ2
abξ

2
ab(0)

ξc(0)3T

)2/3

(δth)2/3 = 1 (13)

where c2 = g4
M(

√
1+ 1/(2g2

M) − 1)/2, κab = λab/ξab is the GL parameter and3T =
φ2

0/(16π2kBTc0) with φ0 being the flux quantum. The variablest = T/Tc0 and h =
H/Hc

c2(0) are, respectively, the temperature in units of the critical temperature at zero field
and the magnetic field normalized to the upper critical field along thec-axis atT = 0.
In the particular case whereθ = 0 (the applied magnetic field parallel to thec-axis),
δ = 1 and equation (13) reduces to that obtained by Herbut and Tesanovic [12]. One
observes that equation (13) corresponds to an angular scaling function in the variablest and
hθ = H/Hc2(T , θ) = δh for the first-order melting line in anisotropic 3D superconductors.
In the next section the curves obtained from equation (13) are plotted for several orientations
of the magnetic field and compared with experiments performed on YBa2Cu3O7−δ, since
this material presents 3D scaling behaviour [17, 18].



First-order melting of the vortex lattice in a superconductor 1367

Figure 1. Melting lines of the vortex lattice calculated from equation (13) for three directions
of the applied magnetic field. The same values as in reference [11] were used for the physical
parameters.

Figure 2. The field dependence of the temperature width of the hysteresis due to superheating
of the low-temperature phase for three directions of the applied magnetic field. The solid line
corresponds to the hysteresis width calculated in reference [11] for applied magnetic fields
parallel to thec-axis. The hysteretic nature characterizing the first-order melting transitions is
observed for all of the magnetic field directions.

4. Results and discussion

The present work analyses the angular dependence of the melting line using the GL theory
within the LLL approximation. The main result is equation (13) which gives the transition
line for an arbitrary direction of the magnetic field. Figure 1 shows the calculated melting
lines for three different directions of the applied magnetic field. We use the same values
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as are used in reference [12] for the physical parameters. The solid line corresponds to the
theoretical transition line calculated in reference [12] which is in good agreement with the
experimental data of reference [3].

Herbut and Tesanovic [12] neglected the supercooling of the vortex liquid upon lowering
the temperature and took only the superheating of the solid phase into account in order to
calculate the thermodynamic hysteresis width in temperature as a function of the magnetic
field in a 3D anisotropic superconductor by using the superheating conditiongSH = −6.25
as predicted by the density functional theory for the 2D vortex system [13]. The functional
dependence of their calculated hysteresis width agrees with the observation from resistivity
measurements [2, 3] but the result is roughly an order of magnitude larger, which they
attribute to the effects of disorder and lack of equilibration in the experiment [12]. In order
to obtain a qualitative picture of the hysteresis width for the different directions of the
applied magnetic field, we use the same criterion as in reference [12] to estimate this width.
Figure 2 displays the hysteresis width in temperature for several directions of the applied
magnetic field which shows the hysteretic character of the transition for all of the directions
of the applied magnetic field in the range of the fields studied.

Figure 3. Theoretical melting lines for applied magnetic fields parallel and perpendicular to the
c-axis (solid lines) compared with the experiments of reference [4]. The crosses and diamonds
correspond to the experimental data of Kwoket al for magnetic fields parallel and perpendicular
to thec-axis, respectively.

In figure 3 the calculated melting lines for applied magnetic fields in the directions
parallel and perpendicular to thec-axis are compared with the experimental data from
reference [4], showing a good agreement. ForgM = −6.5 we setTc0 = 92.33 K,
Hc
c2(0) = 166.7 T andε−1 = 7.7 [4], the correlation length in thec-direction was assumed

to beξc(0) = 3.0 Å [12] and the best agreement with the experimental data is obtained for
a GL parameterκ = 50, which is a reasonable value. Forκ = 55 [4] the value ofgM must
be renormalized togM = −5.3 in order to obtain good agreement with the experiments.

In conclusion, we have generalized the Herbut and Tesanovic calculation [12] for the
first-order melting line for 3D anisotropic superconductors. The angular dependence of the
melting line is obtained and compared with experimental data for fields parallel to thec-axis
and parallel to theab-planes, showing good agreement.
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